GEOMETRY – SHEET 5 – 3×3 Orthogonal Matrices. Rotating Frames

1. Consider the orthogonal matrices

$$A = \frac{1}{3} \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}; \qquad B = \frac{1}{2} \begin{pmatrix} \sqrt{2} & \sqrt{2} & 0 \\ 1 & -1 & \sqrt{2} \\ 1 & -1 & -\sqrt{2} \end{pmatrix}.$$

Is either a rotation? - in which case find the axis and angle of rotation. Is either a reflection? - in which case find the plane of reflection.

2. With $0 \leq \theta < 2\pi$, let

$$A_{\theta} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \theta & -\sin \theta\\ 0 & \sin \theta & \cos \theta \end{pmatrix}, \quad \text{and} \quad B = \frac{1}{25} \begin{pmatrix} 15 & 0 & 20\\ -16 & 15 & 12\\ 12 & 20 & -9 \end{pmatrix}.$$

(i) Show that B is orthogonal and that $\det B = -1$. Show that B does not represent a reflection.

(ii) Find a value of θ such that $A_{\theta}B$ represents a reflection. For this value of θ , find the plane of reflection of $A_{\theta}B$.

3. Let

$$B = \frac{1}{2} \begin{pmatrix} \sqrt{2} & \sqrt{2} & 0\\ 1 & -1 & \sqrt{2}\\ 1 & -1 & -\sqrt{2} \end{pmatrix}, \qquad R\left(\mathbf{i}, \theta\right) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \theta & -\sin \theta\\ 0 & \sin \theta & \cos \theta \end{pmatrix}, \qquad R\left(\mathbf{j}, \theta\right) = \begin{pmatrix} \cos \theta & 0 & -\sin \theta\\ 0 & 1 & 0\\ \sin \theta & 0 & \cos \theta \end{pmatrix},$$

where $\theta \in \mathbb{R}$. Find α, β, γ in the ranges $-\pi < \alpha \leq \pi, 0 \leq \beta \leq \pi$ and $-\pi < \gamma \leq \pi$ such that

$$B = R(\mathbf{i}, \alpha) R(\mathbf{j}, \beta) R(\mathbf{i}, \gamma).$$

[Hint: note that $R(\mathbf{i}, -\alpha)B\mathbf{i}$ must be a linear combination of \mathbf{i} and \mathbf{k} .]

4. Let

$$A(t) = \frac{1}{9} \begin{pmatrix} 4+5\cos t & -4+4\cos t+3\sin t & 2-2\cos t+6\sin t \\ -4+4\cos t-3\sin t & 4+5\cos t & -2+2\cos t+6\sin t \\ 2-2\cos t-6\sin t & -2+2\cos t-6\sin t & 1+8\cos t \end{pmatrix}.$$

Given that A(t) is orthogonal for all t [you do not need to verify this], find the angular velocity.

5. Let

 $\mathbf{e}_r = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$

where θ and ϕ are functions of time t.

(i) Show that \mathbf{e}_r has unit length and that

$$\dot{\mathbf{e}}_r = \dot{\theta}\mathbf{e}_\theta + \dot{\phi}\sin\theta\mathbf{e}_\phi$$

for two unit vectors \mathbf{e}_{θ} and \mathbf{e}_{ϕ} which you should determine. Find similar expressions for $\dot{\mathbf{e}}_{\theta}$ and $\dot{\mathbf{e}}_{\phi}$.

- (ii) Show that \mathbf{e}_r , \mathbf{e}_{θ} , \mathbf{e}_{ϕ} form a right-handed orthonormal basis.
- (iii) Find the angular velocity ω , in terms of \mathbf{e}_r , \mathbf{e}_{θ} , \mathbf{e}_{ϕ} , such that

$$\dot{\mathbf{e}}_r = \omega \wedge \mathbf{e}_r, \qquad \dot{\mathbf{e}}_\theta = \omega \wedge \mathbf{e}_\theta, \qquad \dot{\mathbf{e}}_\phi = \omega \wedge \mathbf{e}_\phi.$$

6. (Optional) The matrix A(t) below is orthogonal and has determinant 1. [You do not need to verify this.]

$$A(t) = \left(\begin{array}{cc} \cos \omega t & -\sin \omega t \\ \sin \omega t & \cos \omega t \end{array}\right)$$

(i) Show that A'(t) = WA where W is a constant matrix such that $W^T = -W$.

(ii) Determine W^2 and hence show that $A(t) = e^{Wt}$ where the exponential of a square matrix is defined by

$$e^X = I + X + X^2/2! + X^3/3! + \cdots$$

(iii) Show, in general, that if X is an anti-symmetric matrix (that is $X^T = -X$) then e^X is an orthogonal matrix.