1. Consider the orthogonal matrices

$$
A=\frac{1}{3}\left(\begin{array}{ccc}
2 & 2 & -1 \\
2 & -1 & 2 \\
-1 & 2 & 2
\end{array}\right) ; \quad B=\frac{1}{2}\left(\begin{array}{ccc}
\sqrt{2} & \sqrt{2} & 0 \\
1 & -1 & \sqrt{2} \\
1 & -1 & -\sqrt{2}
\end{array}\right)
$$

Is either a rotation? - in which case find the axis and angle of rotation. Is either a reflection? - in which case find the plane of reflection.
2. With $0 \leqslant \theta<2 \pi$, let

$$
A_{\theta}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right), \quad \text { and } \quad B=\frac{1}{25}\left(\begin{array}{ccc}
15 & 0 & 20 \\
-16 & 15 & 12 \\
12 & 20 & -9
\end{array}\right)
$$

(i) Show that B is orthogonal and that $\operatorname{det} B=-1$. Show that B does not represent a reflection.
(ii) Find a value of θ such that $A_{\theta} B$ represents a reflection. For this value of θ, find the plane of reflection of $A_{\theta} B$.
3. Let

$$
B=\frac{1}{2}\left(\begin{array}{ccc}
\sqrt{2} & \sqrt{2} & 0 \\
1 & -1 & \sqrt{2} \\
1 & -1 & -\sqrt{2}
\end{array}\right), \quad R(\mathbf{i}, \theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right), \quad R(\mathbf{j}, \theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)
$$

where $\theta \in \mathbb{R}$. Find α, β, γ in the ranges $-\pi<\alpha \leqslant \pi, 0 \leqslant \beta \leqslant \pi$ and $-\pi<\gamma \leqslant \pi$ such that

$$
B=R(\mathbf{i}, \alpha) R(\mathbf{j}, \beta) R(\mathbf{i}, \gamma)
$$

[Hint: note that $R(\mathbf{i},-\alpha) B \mathbf{i}$ must be a linear combination of \mathbf{i} and \mathbf{k}.]
4. Let

$$
A(t)=\frac{1}{9}\left(\begin{array}{ccc}
4+5 \cos t & -4+4 \cos t+3 \sin t & 2-2 \cos t+6 \sin t \\
-4+4 \cos t-3 \sin t & 4+5 \cos t & -2+2 \cos t+6 \sin t \\
2-2 \cos t-6 \sin t & -2+2 \cos t-6 \sin t & 1+8 \cos t
\end{array}\right)
$$

Given that $A(t)$ is orthogonal for all t [you do not need to verify this], find the angular velocity.
5. Let

$$
\mathbf{e}_{r}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

where θ and ϕ are functions of time t.
(i) Show that \mathbf{e}_{r} has unit length and that

$$
\dot{\mathbf{e}}_{r}=\dot{\theta} \mathbf{e}_{\theta}+\dot{\phi} \sin \theta \mathbf{e}_{\phi}
$$

for two unit vectors \mathbf{e}_{θ} and \mathbf{e}_{ϕ} which you should determine. Find similar expressions for $\dot{\mathbf{e}}_{\theta}$ and $\dot{\mathbf{e}}_{\phi}$.
(ii) Show that $\mathbf{e}_{r}, \mathbf{e}_{\theta}, \mathbf{e}_{\phi}$ form a right-handed orthonormal basis.
(iii) Find the angular velocity ω, in terms of $\mathbf{e}_{r}, \mathbf{e}_{\theta}, \mathbf{e}_{\phi}$, such that

$$
\dot{\mathbf{e}}_{r}=\omega \wedge \mathbf{e}_{r}, \quad \dot{\mathbf{e}}_{\theta}=\omega \wedge \mathbf{e}_{\theta}, \quad \dot{\mathbf{e}}_{\phi}=\omega \wedge \mathbf{e}_{\phi}
$$

6. (Optional) The matrix $A(t)$ below is orthogonal and has determinant 1. [You do not need to verify this.]

$$
A(t)=\left(\begin{array}{cc}
\cos \omega t & -\sin \omega t \\
\sin \omega t & \cos \omega t
\end{array}\right)
$$

(i) Show that $A^{\prime}(t)=W A$ where W is a constant matrix such that $W^{T}=-W$.
(ii) Determine W^{2} and hence show that $A(t)=e^{W t}$ where the exponential of a square matrix is defined by

$$
e^{X}=I+X+X^{2} / 2!+X^{3} / 3!+\cdots
$$

(iii) Show, in general, that if X is an anti-symmetric matrix (that is $X^{T}=-X$) then e^{X} is an orthogonal matrix.

